
A LESSON IN CONFLICT MITIGATION: 
 INTEGRATING DIVERGENT DESIGN PHILOSOPHIES 

 
 

Katelyn R. Brinker, Rebecca C. Marcolina  
Missouri University of Science and Technology, Rolla, Mo, USA  

 
 
 
 

Advised By: Dr. Kurt Kosbar, Dr. Melanie Mormile 
Missouri University of Science and Technology, Rolla, Mo, USA 

 
 
 
 

ABSTRACT 
 

The Mars Rover Design Team is dedicated to building a next generation rover that will one day                                 
assist astronauts in the field. The complexity of such a project increases when the two conflicting                               
design philosophies of agile software development and traditional waterfall development must                     
work in tandem in order to design and construct a rover within a year. Agile software                               
development promotes the flexible, test­driven production of coinciding design aspects, while                     
the waterfall design philosophy relies on thorough planning and rigid, sequential design                       
schedules. The project managers of the team work to balance these opposing philosophies by                           
fostering individual interests, allowing team members to select their own focus areas within a                           
wide variety of mission critical tasks. This practice accelerates the design and construction of the                             
rover and in turn creates the momentum needed to achieve a common goal while consolidating                             
both agile software and traditional waterfall development. 

 
 

INTRODUCTION 
 

When managing a design team, taking the risk of implementing two conflicting design                         
philosophies is an unconventional yet, in our experience, effective approach to project                       
management. The Mars Rover Design Team (MRDT) of Missouri University of Science and                         
Technology was created four years ago in order to compete against other schools in the                             
University Rover Challenge (URC), an annual international competition in which schools design                       
and construct rovers (Fig. 1) to execute a series of tasks similar to those critical to a future                                   
manned mission on Mars [1].  
 

1 
 



 
Figure 1: MRDT’s 2016 Competition Rover, Zenith 

 
The team’s success at competition is enhanced by the use of effective project management                           
throughout the rover’s development, but it is primarily a product of every team member’s                           
cooperation and dedication to the design team. It is not always easy, though, to achieve                             
cooperation when the team implements two divergent philosophies ­ traditional development and                       
agile development ­ into the design process. The project managers of the team work to balance                               
these opposing philosophies by fostering individual interests; thus, team members are                     
encouraged to select their own projects within a wide variety of mission critical tasks. This                             
practice accelerates the design and construction of the rover and in turn creates the momentum                             
needed to achieve a common goal while consolidating both design philosophies. 

 
 

THE DESIGN PHILOSOPHIES 
 

While traditional waterfall development and agile development contradict one another, they are                       
both effective models of project management. For this reason, MRDT works to utilize both                           
approaches, in spite of the fact that the team faces conflicts as a result of this dual                                 
implementation. The traditional style of project management is a form of management that relies                           
on sequential design and construction cycles. First officially proposed in the 1970s, the waterfall                           
methodology can be broken down into the following basic phases: research, design,                       
implementation and testing, verification and review, and maintenance (Fig. 2) [2]. These phases                         
encompass smaller, phase­specific development stages, and once a particular phase is completed,                       
it is typically not revisited. A linear, top­down methodology such as waterfall development has                           
been found to break a project’s life cycle into manageable pieces more effectively than some                             

2 
 



other management styles, especially where large projects are concerned [3, 4]. All design                         
constraints and requirements are gathered from the customer and researched thoroughly before                       
designs are finalized so as to minimize design errors and miscommunications before construction                         
begins. The critical aspect of this design philosophy is to accompany each phase with                           
continuous, thorough documentation and design analysis. In doing so, progress can be tracked                         
easily with clearly defined milestones, and most problems are uncovered and solved before                         
entering the testing phase [3]. However, some aspects of a project, such as its software or                               
electrical hardware, can be hindered by this rigid development structure. By testing near the end                             
of the project’s life cycle, it is possible that some design or implementation errors will go unseen,                                 
later causing elevated costs or schedule delays.  
 

 
Figure 2: Breakdown of Traditional Waterfall Methodology 

 
As a result, a new style of project management was introduced in the early 2000s to change these                                   
problematic aspects of traditional methods [5]. The agile methodology is a flexible, iterative                         
approach to management. Via agile, cross­functional teams design and test coinciding aspects of                         
a project throughout its development cycle while regularly submitting their results for customer                         
review and feedback. Composed of developers, designers, planners, and testers, these different                       
cross­functional teams use various iterations, or short phases of development, to develop                       
individual aspects of a project [6]. Instead of an intensive initial research and design phase,                             
iterations rely on small bursts of productivity followed by recurrent test phases, as detailed in                             
Figure 3. Individual aspects of the project are later integrated into the rest of the system, tested,                                 
and subjected to feedback from senior analysts, customers, and business representatives [7]. If                         
there are no further changes necessary, the finished aspect is then incorporated into the rest of the                                 
project, and the team is given a new task. If additional changes are suggested, then the team                                 
begins a new iteration cycle to redesign their component. Iterations have loose schedules, as they                             
are organized in priority order based on values determined by the developer or customer [8]. This                               
flexibility allows customer requirements and expectations to change throughout the development                     
process, and while it can be difficult to track and document uniformly, progress is usually rapid                               
when employing this methodology. Both methodologies can be advantageous to project                     
development, but blending these conflicting design philosophies can create many complications.  

3 
 



 
Figure 3: Breakdown of Agile Methodology  

 
 

MRDT AND PROJECT MANAGEMENT 
 

To understand which problems the team faced when these two methodologies clash, one must                           
first understand the team’s structure. The organization of MRDT is similar to that of a small                               
engineering firm: a team elected, four­member executive board oversees the team’s four                       
branches ­ Executive, Administrative, Financial, and Technical ­ that break down further into                         
smaller divisions as shown in Figure 4.  

 
Figure 4: Overarching Team Structure  

4 
 



However, the challenges to project management brought about by mixing traditional and agile                         
development originate solely in the Technical branch of the team, which is examined in Figure 5.                               
Composed of four different sub­teams ­ Mechanical, Telemetry and Controls, Power, and                       
Science ­ the Technical branch is responsible for the complete design and construction of the                             
rover. Each sub­team also breaks down further into project­area based squads.  
 

 
Figure 5: Technical Branch Breakdown 

 
The Mechanical sub­team primarily utilizes the traditional waterfall methodology. This rigid,                     
sequential approach is a sensible choice for a construction­based project, as strict schedules help                           
the team meet URC­mandated deadlines for initial designs, models, and prototypes. The long                         
research period of the waterfall approach guides the Mechanical division to stay within budget,                           
and intensive system analyses help prevent major failures when testing parts. Attempting a                         
linear, one­shot approach to software development created unnecessary delays for many                     
Telemetry squads, as the requirements for a rover’s software systems are often incomplete or                           
ambiguous [4]. An iterative development methodology such as agile enables system changes to                         
be made easily as the project progresses. When all critical systems are functional, squad                           
members can then work to implement features that, while not mission critical, benefit the team’s                             
competition performance. The Mechanical and Technical sub­teams each implement the design                     
approach they feel to be the best fit for their particular project, and while this practice is efficient                                   
within the two individual sub­teams, it often causes problems that spill over into the rest of the                                 
team.  

 
 

IMPLEMENTATION AND CONFLICTS  
 

In choosing to implement both traditional and agile design philosophies, MRDT members had to                           
recognize that neither philosophy would exist in its pure state and thus, learn to compromise                             
accordingly. For example, as a student design team, MRDT does not have a specified customer.                             

5 
 



Instead, the team views its competition as a customer, basing design requirements and research                           
off of current URC rules and observations from previous years. Given the fact that these                             
specifications are often fairly vague, and that many systems are interdisciplinary in nature, the                           
Technical branch’s network of sub­teams and squads also regard one another as customers. To                           
create most of the rover’s components, squads from different sub­teams are required to                         
collaborate on designs. This is where most conflicts arise, as each sub­team takes a different                             
approach to the design and development phases.  
 
In the team’s early years, MRDT tried to exclusively use the traditional method. This was a                               
major benefit for the Mechanical sub­team, as the rover’s mechanical systems were fully                         
designed and developed in time for two or more rounds of tests and refinements. On the other                                 
hand, this practice led to a lot of complications for the Telemetry and Controls sub­team. The                               
sub­team’s design phase lasted through the first four months of the project’s life cycle, meaning                             
that work on the systems did not start until January. Yet little to no progress was made when                                   
work began, as poor designs caused the core systems to be more complex than originally                             
anticipated. Telemetry squads had to try and salvage this flawed design, though, because they                           
had spent too much time developing this model and were locked into traditional schedule                           
constraints. Additionally, the squads faced pressure from other sub­teams of MRDT that were                         
anxious to begin testing their own systems. In the end, auxiliary systems were left unfinished                             
until late April, resulting in rushed low­quality systems.  
 
As a result, many Telemetry team members grew apprehensive of the traditional method and                           
started advocating to implement the agile methodology. Thus, the team began to experiment with                           
a blend of the two design philosophies. Since the implementation of a more agile project                             
management style on the Telemetry sub­team, members are able to begin designing software and                           
electrical hardware earlier in the year, which helps to ensure that their systems are ready for                               
initial testing by the time mechanical systems are fabricated. While ​each philosophy works well                           
within the confines of individual sub­teams, conflicts often arise as the Mechanical and                         
Telemetry squads interact throughout the rover’s development.  
 
Strict, traditional schedules of Mechanical components clash with the loose, occasionally                     
non­existent deadlines of agile projects, and team budgets are left incomplete without details                         
about potential Telemetry expenses. MRDT faces these challenges as an outcome of its design                           
process. With purely traditional development, designs are completed early in the project life                         
cycle, whereas in pure agile development, designs are flexible enough that they can change                           
throughout the project life cycle. For URC, the team begins with a basic design, clearly defined                               
end goals, and a rough plan of how to complete all tasks. When only working towards a certain                                   
functionality, the final cost and image of the rover are uncertain at best. These numbers are not                                 
necessarily made clearer as the project progresses, either. When the number of revisions a project                             
will need in order to achieve the desired end result is unknown, it is easy to over­ or                                   
under­allocate funds to different sub­teams. For instance, three revisions of a printed circuit                         
board versus four revisions can have a difference of several hundred dollars, and with a project                               
cap of 15,000 USD, the team cannot afford to drastically over­allocate funds to certain systems.  
 

6 
 



This uncertainty presents more than just budgeting and scheduling challenges, however; it makes                         
it incredibly difficult to allocate personnel. If the team does not know the full scope of one of the                                     
rover’s systems, it is hard to determine the amount of personnel and the skill levels required to                                 
complete it. These types of instances can cause an uneven distribution of team members and                             
experience levels across projects, which can lead to some systems falling behind others. This is                             
exacerbated by MRDT being a volunteer organization, as team management cannot force a team                           
member to be interested in specific tasks. These challenges in personnel allocation can prevent                           
systems from being integrated into the rest of the rover, resulting in missed deadlines and rising                               
tensions among team members who already clash over differing ideologies. Constant tension                       
between members can create an uncomfortable work environment for both new and old                         
personnel, and the intense support for one design philosophy or the other can give the inaccurate                               
impression that the team does not welcome new ideas. If left unresolved, this image can drive                               
away potential members and other opportunities for the team.  

 
 

MITIGATION 
 

The conflicts faced by implementing two separate design philosophies in tandem are                       
unavoidable. However, these problems can be mitigated primarily through cultivating the                     
interests and passion of team members, as harnessing this passion helps to promote compromise                           
when it comes to defining the team’s expectations, schedules, and budget. Providing an                         
individualized approach to allocating responsibilities helps to foster excitement for and                     
commitment to the team and its success. Potential team members are encouraged to move                           
between squads until they are content, and specialized technical trainings are open to all team                             
members. Additionally, the team attracts students across disciplines with shared interests,                     
allowing members to network and form friendships with students of other ages and backgrounds.                           
These aspects of MRDT create an inviting atmosphere conducive to accelerating the rover’s                         
design and development. 
 
Maintaining this atmosphere and having the capability to make these compromises requires the                         
team to develop a strong foundation of well defined goals, requirements, expectations, and                         
responsibilities each year. Without such, it would be nearly impossible for team members to                           
communicate effectively and work within the boundaries of two distinct design philosophies. To                         
build this foundation, the team begins each rover’s project life cycle with an intensive research                             
and design phase. In the weeks following URC, a competition debrief is hosted so that the team                                 
can analyze its recent performance as well as its operation as a whole over the past year. Through                                   
this analysis, the team derives goals for the upcoming year and discusses how to adapt its                               
organizational structure so that the team’s endeavors are supported by its management practices.                         
Choosing how to adapt, however, is often a cause of friction between team members, as the                               
proponents of each design philosophy debate over which would be a better management choice                           
for the upcoming year. To settle these discussions, the members of MRDT shift their focus back                               
to the team’s commonalities: its goals for competition and its overarching vision.  
 
In order to achieve these goals, the team further develops its foundation by establishing clear                             
expectations and delegating responsibilities before the design phase. This process begins by                       

7 
 



explicitly defining requirements for the rover, which allows for more effective communication                       
and execution of designs throughout the year. It is crucial to the team’s success that each of these                                   
pieces are discussed and understood amongst proponents of both philosophies. After a thorough                         
examination of current URC rules and regulations, the team begins to brainstorm different                         
systems and methods for achieving success in each competition task. During this time, the team                             
also defines all necessary systems, allocates responsibilities across each sub­team, and breaks                       
interdisciplinary projects into manageable pieces. One year, for example, team members almost                       
forgot to fabricate the rover’s drill ­ a component essential to the Sample Return Task of URC ­                                   
due to a miscommunication between sub­team leads. While the drill officially falls under the                           
Science sub­team’s responsibilities, its members lacked the mechanical experience required for                     
the drill’s design and fabrication. It became a situation in which the Mechanical sub­team                           
believed that the Science sub­team was handling its fabrication, while the Science sub­team                         
thought it was the Mechanical sub­team’s responsibility. This mindset continued for a couple                         
months before it was realized that no one was working on the designs. Additionally, no one had                                 
supplied the Telemetry and Controls sub­team with the information they needed to begin                         
software and PCB design to incorporate the drill with the rest of the rover’s systems. After a                                 
discussion amongst team leads, it was ultimately decided that the Mechanical sub­team would                         
take control of the project while being advised by Science team members. If this error in task                                 
allocation went undiscovered, the entire system could have slipped through the cracks and                         
missed completion. The team, therefore, has come to give this aspect of project management a                             
higher priority than other mitigation techniques.  
 
For reasons similar to those described above, the schedule of both philosophies must be                           
determined early in the year. In the experience of MRDT, though, scheduling is one of the most                                 
difficult facets of blending the two philosophies, as it requires ideological compromises from                         
proponents on both sides. To help the rigid traditional schedule adapt to the uncertain, flexible                             
schedule that accompanies agile development, MRDT’s Technical branch implements several                   
basic milestones for all sub­teams throughout the year. These include the following: Critical                         
Design Review, Drive Date, Auxiliary Operation Date, Rover Reveal, and Competition. Each                       
milestone takes into account the school schedule, the nature of the projects undertaken, the                           
available personnel, and the operation of the team’s other three branches. This allows each                           
sub­team to have an idea of when systems need to be operational while still being able to                                 
implement its preferred project management approach. The individual traditional and agile                     
schedules come together through system dependencies. If, for example, a system requires                       
software before it can be integrated into the rover, the software responsible for the core                             
functionality has a deadline that is set slightly after the hardware’s deadline, so that testing and                               
debugging can occur before the entire system is integrated into the rover. Thus, parts of software                               
can be written in parallel with the mechanical structure and electrical hardware design, rather                           
than waiting to begin until after the fabrication of physical rover components. T​his practice                           
allows architecture design flaws to be discovered and alleviated earlier in the project life cycle.                             
Additionally, work on the rover’s auxiliary systems begins earlier in the year, and should                           
on­rover software require further revisions, new features can be added without delaying other                         
systems or removing the rover’s necessary functionality for testing. Each system is analyzed in                           
this fashion to create the overarching schedule. Yet, the team’s schedule is never completely                           
finalized; it is instead evaluated and adapted on a weekly basis, providing the team opportunities                             

8 
 



to account for unknowns rather than forcing members to cut corners in order to meet project                               
deadlines.   
 
To balance funds between sub­teams relying on different schedules and ideologies, MRDT first                         
creates an overarching budget for the rover at the beginning of the year, based off of numbers                                 
from previous years and funds currently available to the team. As the design process progresses,                             
a more detailed sub­team level budget is generated. The team waits to generate this sub­team                             
level budget so as to allow the development of each system to drive the budget’s creation, rather                                 
than solely using the budget to determine the rover’s systems. To balance traditional and agile                             
budget demands within the Technical branch, three revision opportunities are allocated for each                         
Telemetry and Controls system. This practice helps available funds to flow easily between                         
sub­teams as needed. If, for example, one system only requires two revisions, the remaining                           
funds for the third revision can be reallocated to other systems. Team leads can also transfer                               
funds from their sub­team to another sub­team more in need. Compromises such as these require                             
students to look beyond their individual system and to make decisions according to what is best                               
for the team. Overall, these practices act as a safety net to help ensure that all systems receive the                                     
funds necessary for their project’s completion and have a chance for revisions. The team                           
carefully documents all income and purchases, and carefully records how money is allocated                         
among systems on rover. By using these flexible boundaries, MRDT accounts for the uncertainty                           
associated with agile development, and helps to blend it with the thorough, steady documentation                           
of traditional methodology. Adaptability is at the core of every mitigation technique described                         
here, as the techniques must change as the team does to enable sustainability as well as                               
advancement.   

 
 

CONCLUSION 
 

While there are projects better suited to the use of one design philosophy or the other, it is clear                                     
that blending traditional and agile project development can be a powerful management                       
technique. Every member of MRDT at the Missouri University of Science and Technology has                           
worked tirelessly to overcome the conflicts that accompany the implementation of these two                         
philosophies. Regardless of which mitigation techniques the team employs to accomplish this,                       
vision is the ultimate catalyst. MRDT operates under the vision “Today. Tomorrow. Forever.”                         
“Today” is the hard work that goes into building each rover. “Tomorrow” is the team’s                             
investment in its members. As students participate in the team, they gain valuable skills and                             
experiences that will allow them to one day be the best possible engineers, scientists, managers,                             
and leaders they can be. “Forever” is the team’s commitment to giving back and furthering space                               
technology. Most individuals involved in STEM have been inspired to pursue this field by                           
someone or something. MRDT strives to be that someone for younger generations. This vision                           
provides the energy needed to design, build, and test a rover and then compete with it every year.                                   
The team’s continuing vision and yearly goals provide a common ground for the proponents of                             
each philosophy, allowing team members to set aside their differences, communicate effectively,                       
and develop a competition­worthy rover to the best of their abilities.  
 
 

9 
 



REFERENCES 
 

[1] Mars Society, “University Rover Challenge”, Lakewood, CO, ​http://urc.marssociety.org/​,                 
Accessed 2016, June 1.  
 
[2] D. Hughey, “Comparing Traditional Systems Analysis and Design with Agile                     
Methodologies: Waterfall Method”, University of Missouri – St. Louis, 2009,                   
http://www.umsl.edu/~hugheyd/is6840/waterfall.html​, Accessed 2016, June 1.  
 
[3] W. W. Royce, “Managing the Development of Large Software Systems”, Proceedings IEEE                         
Wescon – 1970, pages 1­9.   
 
[4] T. E. Bell and T. A. Thayer, “Software Requirements: Are They Really a Problem?”, TRW                               
Defense and Space Systems Group – Redondo Beach, California, 1976.  
 
[5] Agile Alliance, “Agile 101: What is Agile?”, 352 Inc, Atlanta, GA, 2016,                         
https://www.agilealliance.org/agile101/what­is­agile/​, Accessed 2016, June 1.  
 
[6] Agile Alliance, “Agile Glossary: Team”, 352 Inc, Atlanta, GA, 2016,                     
https://www.agilealliance.org/glossary/team/​, Accessed 2016, June 1.  
 
[7] C. Neagu, “Traditional and Agile Project Management”, Stand by Soft, Craiova, Dolj,                         
Romania, 
http://www.rationalplan.com/projectmanagementblog/traditional­and­agile­project­management­
in­a­nutshell​, Accessed 2016, June 1.  
 
[8] M. Lotz, “Waterfall vs. Agile: Which is the Right Development Methodology for Your                           
Project?”, Seuge Technologies, Washington, D.C., 2013,           
http://www.seguetech.com/blog/2013/07/05/waterfall­vs­agile­right­development­methodology​, 
Accessed 2016, June 1.   
 

10 
 

http://urc.marssociety.org/
http://www.umsl.edu/~hugheyd/is6840/waterfall.html
https://www.agilealliance.org/agile101/what-is-agile/
https://www.agilealliance.org/glossary/team/
http://www.rationalplan.com/projectmanagementblog/traditional-and-agile-project-management-in-a-nutshell
http://www.rationalplan.com/projectmanagementblog/traditional-and-agile-project-management-in-a-nutshell
http://www.seguetech.com/blog/2013/07/05/waterfall-vs-agile-right-development-methodology

